6 research outputs found

    Structured Compressed Sensing: From Theory to Applications

    Full text link
    Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discrete-to-discrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuous-time signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.Comment: To appear as an overview paper in IEEE Transactions on Signal Processin

    Measurement Bounds for Sparse Signal Ensembles via Graphical Models

    Full text link
    In compressive sensing, a small collection of linear projections of a sparse signal contains enough information to permit signal recovery. Distributed compressive sensing (DCS) extends this framework by defining ensemble sparsity models, allowing a correlated ensemble of sparse signals to be jointly recovered from a collection of separately acquired compressive measurements. In this paper, we introduce a framework for modeling sparse signal ensembles that quantifies the intra- and inter-signal dependencies within and among the signals. This framework is based on a novel bipartite graph representation that links the sparse signal coefficients with the measurements obtained for each signal. Using our framework, we provide fundamental bounds on the number of noiseless measurements that each sensor must collect to ensure that the signals are jointly recoverable.Comment: 11 pages, 2 figure

    Model-Based Compressive Sensing

    Full text link
    Compressive sensing (CS) is an alternative to Shannon/Nyquist sampling for the acquisition of sparse or compressible signals that can be well approximated by just K << N elements from an N-dimensional basis. Instead of taking periodic samples, CS measures inner products with M < N random vectors and then recovers the signal via a sparsity-seeking optimization or greedy algorithm. Standard CS dictates that robust signal recovery is possible from M = O(K log(N/K)) measurements. It is possible to substantially decrease M without sacrificing robustness by leveraging more realistic signal models that go beyond simple sparsity and compressibility by including structural dependencies between the values and locations of the signal coefficients. This paper introduces a model-based CS theory that parallels the conventional theory and provides concrete guidelines on how to create model-based recovery algorithms with provable performance guarantees. A highlight is the introduction of a new class of structured compressible signals along with a new sufficient condition for robust structured compressible signal recovery that we dub the restricted amplification property, which is the natural counterpart to the restricted isometry property of conventional CS. Two examples integrate two relevant signal models - wavelet trees and block sparsity - into two state-of-the-art CS recovery algorithms and prove that they offer robust recovery from just M=O(K) measurements. Extensive numerical simulations demonstrate the validity and applicability of our new theory and algorithms.Comment: 20 pages, 10 figures. Typo corrected in grant number. To appear in IEEE Transactions on Information Theor

    Signal recovery in compressed sensing via universal priors. arXiv:1204.2611

    No full text
    Abstract We study the compressed sensing (CS) signal estimation problem where an input is measured via a linear matrix multiplication under additive noise. While this setup usually assumes sparsity or compressibility in the observed signal during recovery, the signal structure that can be leveraged is often not known a priori. In this paper, we consider universal CS recovery, where the statistics of a stationary ergodic signal source are estimated simultaneously with the signal itself. We focus on a maximum a posteriori (MAP) estimation framework that leverages universal priors such as Kolmogorov complexity and minimum description length. We provide theoretical results that support the algorithmic feasibility of universal MAP estimation through a Markov Chain Monte Carlo implementation. We also include simulation results that showcase the promise of universality in CS, particularly for low-complexity sources that do not exhibit standard sparsity or compressibility

    Joint manifolds for data fusion

    No full text
    Abstract—The emergence of low-cost sensing architectures for diverse modalities has made it possible to deploy sensor networks that capture a single event from a large number of vantage points and using multiple modalities. In many scenarios, these networks acquire large amounts of very high-dimensional data. For example, even a relatively small network of cameras can generate massive amounts of high-dimensional image and video data. One way to cope with this data deluge is to exploit low-dimensional data models. Manifold models provide a particularly powerful theoretical and algorithmic framework for capturing the structure of data governed by a small number of parameters, as is often the case in a sensor network. However, these models do not typically take into account dependencies among multiple sensors. We thus propose a new joint manifold framework for data ensembles that exploits such dependencies. We show that joint manifold structure can lead to improved performance for a variety of signal processing algorithms for applications including classification and manifold learning. Additionally, recent results concerning random projections of manifolds enable us to formulate a scalable and universal dimensionality reduction scheme that efficiently fuses the data from all sensors. Index Terms—Camera networks, classification, data fusion, manifold learning, random projections, sensor networks
    corecore